This was a pilot study with a selection of elementary school children based on test measures showing significant attention problems and impulse control, but not clinically diagnosed as ADHD. The purpose of this pilot study was to see if NeuroTracker has the potential be an efficacious short-term intervention for young students with severe attention impairments, based on changes in standardised neuropsychological assessments.
A test and control group of 5 Elementary school students each were included in the study, selected based on severely impaired rating on the IVA+PlusTM Continuous Performance Test. Both groups produced NeuroTracker initial baselines with statistically insignificant differences. The test group completed 21 five-minute NeuroTracker training sessions distributed over 3.5 weeks, the control group did no training. Both groups were then retested on the neuropsychological assessments.
The Test Group improved NeuroTracker speed thresholds by an average of 61% over the course of the training. The control group showed negligible difference in pre-post neuropsychological assessments scores, whereas the trained group showed variable but significant improvements across a range of visual and auditory measures. Gains were most pronounced in Prudence, Consistency and Focus in both visual and auditory domains, matching previous findings, and suggesting cross-modal performance transfer.In general the improvement ratios suggested that a short-term NeuroTracker training intervention can improve severe attention deficits towards moderate attention deficits in this population, with potential to positively impact learning outcomes at a young age.
To evaluate the potential for sports vision training to improve objective and subjective visuomotor function in a low vision patient.
A 37-year-old woman with Usher syndrome underwent a 14-week sports vision training program with pre-post cognitive assessments.
The patient was able to improve the use of remaining visual abilities. A 27 to 31% improvement in hand-eye coordination was achieved along with a 41% improvement NeuroTracker performance. The patient also subjectively reported clear improvements in visual abilities. The researcher concluded sports vision training may reduce the impact of the reduced visual function and aid in activities of daily living.
A variety of egg-based diets over 1-month improve performance on NeuroTracker compared to a no-egg diet.
To evaluate the impact of the nutritional impact of dietary intake of whole eggs, egg white, and egg yolk on visual cognitive performance (NeuroTracker) in healthy older adults.
99 healthy men and women aged 50 to 75 years were randomly assigned to one of five groups with different daily consumption of eggs alongside a record of their usual dietary intake. Over 1-month period participants either consumed four egg whites, two whole regular eggs, two whole omega-3-fortified eggs, four egg yolks, or no eggs (control). During the final 2 weeks of the study all participants completed 15 NeuroTracker.
On average male participants performed significantly better at NeuroTracker than females. All participants on egg-based diets performed significantly better across 2-weeks of NeuroTracker training than the no-egg controls. Findings suggest that whole eggs, egg whites and egg yolks are beneficial for visual cognitive performance in healthy older adults.
Individual with Autism can perform NeuroTracker at different cognitive loads and benefit from feedback at low difficulty levels.
To investigate the cognitive characteristics of individuals with with Autism compared to neurotypical individuals in response to different NeuroTracker loads and feedback.
27 adolescents and adults with Autism and 28 neurotypical adolescents and adults ASD were tasked with performing NeuroTracker at low load (1-target tracking) and high load (4-target tracking) across two sessions of training. Half of the participants received feedback on each trial, and half did not.
Although participants with Autism scored lower than neurotypicals, high load sessions were tolerated equally in comparison to low load sessions. Feedback improved NeuroTracker performance overall, except for participants with Autism on the high load sessions. Participants with Autism receiving feedback scored better than neurotypical participants without feedback, but only on the low load sessions. The results suggest that individuals with Autism can perform NeuroTracker at different loads, and that feedback aids performance at low difficulty levels.
Detailed analysis of dietary intake in combination with daily NeuroTracker baselines reveals key nutrient levels for optimal perceptual-cognitive performance.
To examine the influence of nutritional intake on visual perceptual-cognitive performance, measured by NeuroTracker, in young healthy adults.
98 healthy men (38) and women (60) aged 18–33 years maintained their usual dietary intake while completing NeuroTracker 15 sessions of NeuroTracker over a 15-day period. Food logs and extensive lifestyle measures including body composition, cardiovascular health, sleep and exercise patterns, and general readiness to perform were collected for analysis.
Males consumed significantly more calories, macronutrients, cholesterol, choline, and zinc and performed significantly better on NeuroTracker than the females. Participants who consumed more than 40% of kcals from carbohydrates, less than 24% of kcals from protein, more than 2,000 μg/day lutein/zeaxanthin or more than 1.8 mg/ day of vitamin B2 performed significantly better on NeuroTracker than those who consumed less than those amounts. The researchers concluded that perceptual-cognitive performance is positively influenced by higher carbohydrate, lutein/ zeaxanthin, and vitamin B2 dietary intake, while high protein consumption had negative impacts.
NeuroTracker peer-reviewed research shows promising relevance for broad cognitive enhancement across different populations.
To assess the usefulness of NeuroTracker (3D-MOT) as a cognitive enhancement tool to overcome the common challenges associated with cognitive training products.
The author conducted a comprehensive review of current literature for cognitive enhancement tools, as well as the specific literature on NeuroTracker to probe its strengths and weaknesses as a research tool. Evidence was also examined for the cognitive domains that NeuroTracker addresses.
NeuroTracker was found to have broad scientific relevant for improving a number of cognitive domains, including information processing, attention, working memory, inhibition, and executive functions. Far transfer effects were found in the following human performance domains: visual information processing in healthy adults, biological motion processing in healthy aging subjects, on-field performance in soccer players, and in attention for populations with neurodevelopmental deficits. The author concluded, that while promising peer-reviewed research exists, more investigations are needed to robustly establish the beneficial effects of this method in the context of cognitive enhancement.
NeuroTracker training over 5 weeks improves the visual perception skills of motorcyclists.
To enhance the visual perception ability of motorcycle taxi riders by using a NeuroTracker training intervention.
60 motorcycle taxi riders were volunteers and recruited from Chonburi, Thailand, and randomly assigned to experimental and control groups. The experimental group completed 30-minutes of NeuroTracker training sessions for twice a week over five weeks in total. Pre-post assessments of the Development Test of Visual Perception – Adolescent and Adult (DTVP-A) were completed by both groups.
Results revealed that the experimental group had a significantly higher visual perception ability score after training. In addition, the average DTVP-A score in the experimental group increased to significantly higher than that of the control group. The study findings suggest NeuroTracker training can improve the visual perception ability of motorcycle taxi riders.