3D vision (binocular stereo) develops during childhood and tends to reduce after 65 years of age. This study aimed to investigate whether these effects are significant when processing complex and dynamic motion.
Three groups of 20 subjects were recruited: children (7–12 years old), adults (18–40 years old) and older adults (≥65 years old). Each person completed 4 NeuroTracker sessions, 2 in 2D (no binocular stereo) and 2 in 3D (with binocular stereo).
As typical, adults achieved significantly higher NeuroTracker scores than children or elderly. They also gained a significantly larger advantage when performing NeuroTracker in 3D. In turn, children showed more advantage with 3D than elderly. This suggests that older populations have reduced ability to process complex and dynamic motion using stereoscopic processing. This study reveals that comparison between scores with and without stereoscopic effect, allows direct evaluation of the stereopsis advantage when performing NeuroTracker.
A variety of egg-based diets over 1-month improve performance on NeuroTracker compared to a no-egg diet.
To evaluate the impact of the nutritional impact of dietary intake of whole eggs, egg white, and egg yolk on visual cognitive performance (NeuroTracker) in healthy older adults.
99 healthy men and women aged 50 to 75 years were randomly assigned to one of five groups with different daily consumption of eggs alongside a record of their usual dietary intake. Over 1-month period participants either consumed four egg whites, two whole regular eggs, two whole omega-3-fortified eggs, four egg yolks, or no eggs (control). During the final 2 weeks of the study all participants completed 15 NeuroTracker.
On average male participants performed significantly better at NeuroTracker than females. All participants on egg-based diets performed significantly better across 2-weeks of NeuroTracker training than the no-egg controls. Findings suggest that whole eggs, egg whites and egg yolks are beneficial for visual cognitive performance in healthy older adults.
NeuroTracker peer-reviewed research shows promising relevance for broad cognitive enhancement across different populations.
To assess the usefulness of NeuroTracker (3D-MOT) as a cognitive enhancement tool to overcome the common challenges associated with cognitive training products.
The author conducted a comprehensive review of current literature for cognitive enhancement tools, as well as the specific literature on NeuroTracker to probe its strengths and weaknesses as a research tool. Evidence was also examined for the cognitive domains that NeuroTracker addresses.
NeuroTracker was found to have broad scientific relevant for improving a number of cognitive domains, including information processing, attention, working memory, inhibition, and executive functions. Far transfer effects were found in the following human performance domains: visual information processing in healthy adults, biological motion processing in healthy aging subjects, on-field performance in soccer players, and in attention for populations with neurodevelopmental deficits. The author concluded, that while promising peer-reviewed research exists, more investigations are needed to robustly establish the beneficial effects of this method in the context of cognitive enhancement.
Perceptual cognitive training improves biological motion perception evidence for transferability of training in healthy aging
To investigate if the decline in biological motion perception associated with healthy aging can be reversed with a short NeuroTracker training intervention.
13 participants completed 3-hours of NeuroTracker training over 5-weeks, and 28 control participants did either experimental training or no training (overall mean age of 67 years old). Pre-post assessments of biological motion perception was assessed with a VR walker (point like display) at 4m and 16m.
Pre-NeuroTracker training participants displayed significantly lower performance for interpreting human movement at 4m, compared to 16m. Controls showed no change post-training, whereas the NeuroTracker trained group's performance at 4m rose to the level of their performance at 16m. As biological motion perception abilities are deemed to be important for social skills, as well as critical for collision avoidance at 4m, the researchers concluded that the results demonstrate NeuroTracker to be a useful form of generic training for helping older people deal with socially relevant dynamic scenes.
To investigate if the typically declining perceptual-cognitive abilities of healthy older people can be improved with NeuroTracker training.
20 younger adults (mean age 27 years old) and 20 older adults (mean age 66 years old) completed 3-hours of NeuroTracker training distributed over 3 weeks.
Although older adults had significantly lower NeuroTracker scores than older adults, they demonstrated a strong learning response to the training, equivalent to their younger peers. By the end of the training program the older adults closely matched the initial baseline performance of younger adults. Although the results demonstrate a decline in perceptual-cognitive functions from healthy aging, the results suggest this decline can be quickly reversed with a short training intervention.
Several studies have shown that aerobic exercise can slow age-related cognitive decline, and in some cases, improve cognitive function in the older population. The purpose of this study was to investigate for the first time, the effects of resistance training on cognitive function, as measured by changes in NeuroTracker measures.
25 older adults with a mean age of 70yrs were split into a trained group (6 weeks of resistance exercises), and an untrained group. Perceptual-cognitive ability was measured pre and post training using NeuroTracker baselines.
The older adults who performed six weeks of resistance training experienced significant improvements in perceptual-cognitive function as measured by NeuroTracker. Resistance training may therefore be an effective means to slow age related cognitive decline.
A single 6-min NeuroTracker baseline is highly correlated with simulated driving crash risk and lane deviation in healthy older people.
To test the theory that driving performance is strongly associated with dynamic processing of multiple objects, by evaluating if NeuroTracker measures correlate with older driving performance in simulated scenarios.
30 experienced drivers with ages ranging from 65-85 years old were tested on one session of NeuroTracker (3D-MOT), and completed up to 3 driving scenarios on the STISIM 3.0 driving simulator. 5 unexpected events were included in the scenarios to test crash risk. The correlations between NeuroTracker speed thresholds and simulator measures (crash rate, lane deviation) were then calculated.
Highly significant correlations were found between NeuroTracker thresholds and both crash rate and lane deviation in the highway driving scenarios. Lower NeuroTracker scores were strongly associated with lane deviation during highway merging, and higher NeuroTracker scores related to participants being less likely to crash across different scenarios, and to have better overall lane maintenance skills. This study adds plausibility to the idea that a multiple object tracking test such as NeuroTracker could be a candidate for inclusion in an assessment battery for older drivers.